
As an example, we shall examine the random process ~:(x), whose correlation function has 
the form 

Do cos = ; i  cos =x2_! , D o = c o n s t  

The p a r a m e t e r s  of  the  p rob lem ( 1 ) - ( 3 )  a r e  as  f o l l o w s  

% ( x ) ~ 0 ,  % ~ 0 ,  !o=0.19"10"6 , i =  1, 2. 

F i g u r e  1 shows t h e  change i n  the  m e a n - s q u a r e  t e m p e r a t u r e  as  a f u n c t i o n  o f  c o o r d i n a t e s  
and time, where the characteristic size lo is chosen according to [2]. 

If T r equals the ratio of the Maxwelllan relaxation time and some function of the relaxa- 
tion coefficient [3], then the working equations proposed can be used without any changes to 
determine the corresponding probabilistic characteristics of the random multidimensional tem- 
perature fields of bounded, homogeneous, isotroplc bodies. In addition, the summation must 
be understood as summation with respect to the natural increasing order of the Laplacian 
operator of the corresponding multidimensional problem. 
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ONE-DIMENSIONAl, MODEL OF HEAT TRANSFER IN CRYOGENIC VACUUM- 

SHIELD THERMAL INSULATION WITH RADIANT HEAT SOURCES 
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and P. N. Yurchenko 

UDC 536.21:536.48 

The heat-transfer problem in an insulation consisting of layers which receive heat 
from external source through radiation is numerically solved in the one-dimen- 
sional approximation~ 

It is well known that many characteristics of modern cryogenic devices are determined by 
the thermal properties of the vacuum-shield thermal insulation stacks. Accordingly, more 
efficient new compositions of such stacks are being developed in many countries. At the same 

P 
time, there is still sufficient margin for improvement left in existing vacuum-shleld insula- 
tion, inasmuch as the effective thermal conductivity of these stacks in cryogenic devices is 
at least 1.5-3 times higher than that of the best laboratory specimens [i, 2]. 

According to an earlier analysis [3], one of the causes of this worsening is the presence 
of numerous channels running across a stack of vacuum-shleld thermal insulation (gaps around 
the neck of the vessel, around the support rods, around the cooled object, between insulation 
layers, etc.) and letting hot radiation pass directly to the cold layers of the stack. Since 
that analysis [3] was a semiquantitative one and hardly any other studies on this subject were 
ever made, the authors have developed a model for calculating the heat transfer through the 
layers of vacuum-shield thermal insulation and taking into account the interaction of these 
layers with external radiant heat sources. 

The main difficulties in the mathematical formulation of such a problem arise due to the 
intricate dependence of the thermal flux entering the insulation layers on the law of tempera- 
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ture variation along the channel, this law in turn depending largely on the power of the 
radiant heat sources. As a consequence, in the stack of a vacuum-shield thermal insulation 
with channels penetrating it one can find an either two- or three-dimensional temperature 
field interacting with a compound flux of radiant heat along the boundaries of those chan- 
nels. Even in a simplified form can such a problem be solved with large expenditures of time 
on only the most modern computers with large memories. We therefore have studied the pos- 
sibility of reducing the problem to a one-dimensionalone, considering that in a vacuum- 
shield thermal insulation stack the longitudinal thermal conductivity is 3-4 orders of magni- 
tude higher than the transverse thermal conductivity. As a consequence, the temperature 
gradients along the insulation layers must be much smaller than those across them so that 
the layers can, in the first approximation, be regarded as longitudinally isothermal ones. 
The validity range of this assumption can be estimated on the basis of the ratio (6/[)/%11/% ~ 
i0 [4]. One more dimension of the thermal field is eliminated, viz., even thick stacks of 
vacuum-shield thermal insulation can be regarded as being plane and their thickness small in 
comparison with the diameter of the cryogenic vessel. 

For final touch-up of the calculation method a vacuum-shield thermal insulation stack 
with a hole of the simplest form was selected, a straight circular cylinder, such a configura- 
tion being most suitable for easy experimental verification. The method was then applied to 
long narrow channels appearing in vacuum-shield thermal insulation stacks with loose contacts 
between individual layers. 

Rather than the simplest Fourier equation 

Ox 

a Fourier equation with volume sources of heat 

0 (%(T) O_~x )=qv(x, T ) (2) 
Ox 

must be used for describing one-dimenslonal heat transfer in a vacuum-shield thermal insulation 
stack with a hole and given boundary temperatures 

x = 0  T = T  o = c o n s t ,  ( 3 )  

x = 6 T = T 6 = const. ( 4 )  

The quantity qv is assumed to be uniformly distributed over the surface of each layer, since 
the longitudinal thermal conductivity in the stack has been assumed to be infinitely high. 
The temperature dependence of the thermal conductivity of a vacuum-shield thermal insulation 
is taken from another study [5]. 

In order to determine the quantity qv(x, T), it is necessary to examine the radiant heat 
flowing through the hole to the wall of the stack. For the purpose of solving this problem, 
we treat the cylindrical channel as a closed system consisting of N separate surfaces at a 
constant temperature T i with diffuse reflection. The density of the resultant radiant flux 
in such a system is described by the system of equations [6] 

ei [~T~ - -  B~], i = 1 2, N.  (5 )  q i - -  - -  , " ' "  
l--e~ 

For determining the distribution B i we have the system of linear integral equations 

N 

B, = e,oT~ -{- (1 - -  e , ) ' ~  S Bid~di-ai. (6) 
i=I sj 

The angular coefficients between elementary surfaces are taken from another study [7]. Having 
thus determined qi' we find the resultant radiant flux for each surface 

Q~ = q~s~. (7) 

From the value of qi at the lateral surfaces of the channel, we obtain the magnitude of 
the volume source of radiant heat 

qv (xi, T~) =. Qi 
S ~ s A X "  (8 )  
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It has already been mentioned that, because of the interdependence of the temperature field 
in a vacuum-shield thermal insulation and the radiative heat transfer along a channel, the 
trend of the function qv = qv(X, T) cannot be stipulated beforehand. Problem (2)-(7) will, 
therefore, be solved by the iteration method with qv first assumed to be zero and the temper- 
ature field according to Eq. (i) taken as the first approximation. On the basis of this 
temperature profile, we solve Eqs. (5)-(7) of radiative heat transfer in the channel and 
obtain the second approximation for the distribution of source qv across the thickness of the 
vacuum-shield thermal insulation. Then, using the function qv = qv(X), we proceed to solve 
Eq. (2). The number of successive approximations depends on the requirement as to how small 
the difference between the values of the thermal flux through the vacuum-shield thermal insula- 
tion obtained in two consecutive approximations should be (in our calculations this difference 
was stipulated to be smaller than 0.01%). 

For solving the quasilinear equation (2) by the finite-difference method, we used the 

T 
Kirchhoff substitution ~=fi(T)dT, , which made it possible to reduce this equation to ~/ 

To 

~x2 = qv' The system of linear integral equations (6) was reduced to a system of algebraic 
equations by application of the trapezoidal rule to the integrals on the right-hand sides. 

It must be emphasized that as the radiant heat flux qv (and thus the resultant Qi) in- 
creases, there also increases the difference between the sought actual temperature profile 
T s = Ts(x) in the insulation stack and its first approximation T: = T~(x) obtained from Eq. 
(i). Calculations have revealed that in the range of qv values (based on T~ values) more than 
1.5-2 times higher than the specific thermal flux through a vacuum-shield thermal insulation 
q~ = %dT~/dx, the iteration process becomes divergent. It was found that convergence in this 
range can be achieved only with the initial temperature distribution stipulated as accurately 
as within 0.01=K of the sought temperature profile T s. For a better comprehension of the 
problem, let us note that the difference T s -- T~ can exceed 20-30~ For obtaining an initial 
temperature distribution T b with the required accuracy, therefore, we have developed the fol- 
lowing procedure. 

From the temperature distribution without a heat source T~ = T:(x) according to the solu- 
tion to the system of equations (2)-(7) we determined the temperature distribution T2 = T2(x). 
The values of function T~ at all points exceeded those of functions TI and T s (Fig. i). There- 
fore, the sought solution T s lay between functions TI and Ta and could be found by the fol- 
lowing algorithm. 

On the basis of profiles T~ and T~ we constructed profile T3 as follows. We let T3 = T2 
at the points along the x-coordinate where the values of T~ did not exceed the values of T~ by 
more than ~i = k/(n -- i + i), n denoting the number of layers into which the insulation stack 
had been subdivided, i denoting the consecutive number of a layer counted from the warm 
boundary wall, and the constant K assumed to be equal to 2. At the other points (where 
T2,i > T~,i + ~i) we used the values T~, i + 0.9~ i for T3. Then from the temperature distri- 
bution Ts = T3(x), according to Eqs. (2)-(7), we found a new profile T~ = T~(x). Profiles T3 
and T~, ~btained by this procedure, lay closer to the sought solution than did the initial 
profiles T~ and T~. 

Applying this procedure again to profiles T3 and T~, we found a new distribution Ts from 
which again, on the basis of Eqs. (2)-(7), we found a distribution T,. A new profile T7 was 
then again found from distributions Ts and T6. It is Co be noted that as profiles Tb, TT, or 
analogous ones are being constructed, there may appear points at which T~,i < T3,i or T~,i < 
Ts,i, etc. For such points in the course of finding the distributions Tb, TT, and others we 
let Ts,i = Ts,i, TT,i = Tb,i, etc. The operation of plotting the profiles Ts, TT, ... is to 
be repeated so long until the difference between two adjacent temperature distributions be- 
comes smaller than ~i' 

Along one of these profiles we followed through 2-4 iteration steps toward solving the 
system of equations (2)-(7) and, Subsequently, from the last two functions found we selected 
the profile with the lower temperature. The operation of plotting profiles of the T3, Tb, 
etc. kind was repeated several times, but with a smaller a i. The constant K was decreased 
from 2 to 0.i in these calculations. We again repeated the cycle of plotting profiles of the 
T3 kind until the difference between them became smaller than ~i' Along one of these profiles 
we followed through 2-4 iterations in the system of equations (2)-(7), which already ensured 
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Fig. i. Successive temperature profiles in the insulation ob- 
tained by the iteration process for the solution of the problem 
with hlgh-power radiant heat sources. 

Fig. 2. Effective emissivity at the face of the vacuum-shield 
thermal insulation stack as a function of the relative elonga- 
tion of the gap between shield layers, for various values of 
their emissivity: i) ~ = 0.01; 2) 0.03; 3) 0.05; 4) 0.I; 5) 
0.5. 

that the temperature differed by less than 0.01~ and the thermal flux through the insulation 
stack differed by less than 0.01% from one iteration to the next. 

The described method can also yield the solution in the case of hlgh-power radiant heat 
sources. The machine time on a model M-222 computer then increases from 12-15 to 40-60 min. 

For calculating by this method the heat transfer in a vacuum-shleld thermal insulation 
with radiative heat transfer in the channel taken into account, one needs to have data on the 
emissivity of the cylindrical lateral channel walls. The absorption by these walls is deter- 
mined by the optical characteristics of the gaps between adjacent layers of the vacuum-shleld 
thermal insulation. For determining the emissivity ~eff at the fact of an interlayer gap, we 
have calculated the effective emissivity of an infinitely wide strip of a thickness equal to 
the gap thickness h between layers. For this purpose, Eqs. (5)-(6) of radiative heat trans- 
fer were solved again by that method [6]. In those calculations all walls were assumed to 
have the same emissivity ~ (equal to the emissivity g of the shield layers) uniform along the 
entire channel. 

The reflection by thewalls was assumed to be diffuse and the effect of the packing 
material on the heat transfer in a gap was disregarded. In that study the emissivity was 
varied from 0.01 to 0.i and the channel elongation was varied from i to 100. The results of 
the calculations are shown in Fig. 2. It is to be noted that Eeff has been calculated here 
for the e = 0.1-0.9 range, for which data are already available [6]. The complete agreement 
between our results and those in [6] served as one criterion for verifying the correctness of 
our program of calculating the radiative heat transfer. 

With a low emissivity of the layers (0.01-0.05), the maximum emissivity of a gap face 
Eel f is attained at relative channel elongations Z/h = 20-30. This emissivity ~eff is then 
10-25 times higher than the emissivity of the insulation layers. Accordingly, the face of the 
vacuum-shield thermal insulation stack has an emissivity almost within the 0.3-0.5 range. 

It must be taken into consideration that the presence of a packing material between 
insulation layers can additionally increase the emissivity of the stack face, it can also 
make the maximum Eef f attainable at smaller channel elongations. Since the emissivity of 
the lateral channel walls in a vacuum-shield thermal insulation is high, it is necessary to 
devise methods of its reduction. One of these methods is coating these walls with one layer 
of aluminized polyethylene terephthalate film which has an emissivity within the 0.03-0.05 
range. Such values of ~ were, accordingly, used in subsequent calculations of the heat 
transfer in vacuum-shield insulation. 

As a parameter characterizing the efficiency of an insulation stack, we introduce its 
degradation coefficient 
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Fig. 3. Dependence of the components of the thermal flux reach- 
ing a cryogenic vessel on the emissivity of the face of the 
vacuum-shield thermal insulation stack with a thickness 6: i, 
i') 0.ii m, 2, 2') 0.075 m, 3, 3') 0.0165m; (a) total thermal 
flux through the insulation A| (b) components of the thermal flux 
reaching the bottom base of the channel by radiation qrad and by 
conduction through the insulation (thermal conductivity % T) �9 

k----~T+~rad-- Q~--Qo ~_ Qrad (9) 

Qo Qo 

In this study was examined the dependences of the thermal flux through a vacuum-shield 
thermal insulation stack on the boundary temperatures, the emissivity of the stack face, and 
the stack thickness. The lateral surface of the hole was for these calculations subdivided 
into narrow cylindrical elements and the temperature of each was assumed to be constant. Also 
examined was the dependence of the thermal flux on the number of those elements. As their 
number was increased from 15 to 30, the thermal flux through the insulation stack with given 
parameters was found to have changed by not more than 1-8%. Therefore, it was not deemed 
worthwhile to increase the number of elements further. Calculations were also made assuming 
a uniform effective radiant flux, and then taking into account the nonuniformity of the ther- 
mal flux at both lower and upper channel bases. The results did not differ by more than 2% 
so that in subsequent calculations the thermal flux at both channel bases could be assumed to 
be uniform. Calculations were made for an insulation stack with an area of 1.5 m a, having a 
hole 0.11 m in diameter and emissivity of 1.0 at the upper channel face and of 0.03 at the 
lower channel base. 

The calculations have revealed that increasing the temperature of the warm layer of the 
insulation will degrade the efficiency of the stack noticeably~more than increasing the 
temperature of its cold layer. This trend becomes particularly pronounced as the emissivity 
of the stack face is increased. 

Let us examine the dependence of the insulation efficiency on its thickness. The graph 
in Fig. 3 depizts %, A T , and qrad as functions of the emissivity of the face of the vacuum- 
shield thermal insulation stack for various thicknesses of the latter. The dash lines corre- 
spond to qrad. It is evident here that as the emissivity of the lateral surface of the channel 
increases, the thermal flux impinging on its base decreases and becomes an insignificant part 
of the total thermal flux through thick stacks with a high emissivity. At the same time, how- 
ever, the thermal flux thr_ough the insulation increases and this causes the thermal conduc- 
tlvity of the insulation AT as well as the total heat transfer through the stack (A) to be- 
come worse. For this reason, thinner stacks of vacuum-shield thermal insulation are rela- 
tively more efficient under conditions of strong nonuniformity. 

In vessels with vacuum-shield thermal insulation there often exists gaps between indi- 
vidual stacks, around the neck of the vessel, at the supports, etc. In this connection, the 
graph in Fig. 4 shows the results of calculations of the thermal characteristics made for a 
vacuum-shield thermal insulation stack with a long slot in the form of a rectangular channel. 
The emissivity of the stack face was assumed to be 0.4 here. The graph depicts (for various 
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Fig. 4 .  Dependence of the coefficient of 
insulation efficiency degradation on the 
relative length Z/Zsq of a rectungular slot 
of width h: i) 0.0005 m; 2) 0.001 m; 3) 
0. 002 m. 

slot widths h) the coefficient of insulation degradation ~ on the slot length l, the latter 
referred to the side Zsq of a square with an area equal to that of the vacuum-shleld thermal 
insulation stack. The data here indicate that through slots of a length equal to the side of 
a square vacuum-shield thermal insulation stack already increase the thermal flux through the 
insulation from 8 to 40%. 

In the process of calculations for a vacuum-shield thermal insulation with slots and 
holes, we also determined the radiant thermal flux Qs reaching the face of the insulation 
stack. The relation between Qs and the thermal flux Qo conducted by the insulation was de- 
fined by the ratio ko = (QT -- Qo)/Qs. These calculations have revealed that ko varies from 
0.5 to 0.9, which agrees with the conclusions of our earlier study [3]. The thus-calculated 
thermal flux Qs was then compared with the thermal flux Qso reaching the face of the insula- 
tion stack in the zeroth-order approximation of the temperature distribution, as in the case 
when interaction of the radiant thermal flux with the thermal flux through the insulation 
stack is disregarded and the total thermal flux is assumed to be the additive sum of both 
components. It has been found that Qso is 1.5-4 times larger than Qs" Therefore, calcula- 
ting the radiative heat transfer without taking into account its interaction with the heat 
transfer inside the insulation and then evaluating the latter heat transfer on this basis 
will result in a substantial error in the determination of the thermal flux through the 
insulation. 

In conclusion, we summarize as follows. We have constructed a one-dimensional approxi- 
mate model of heat transfer through a vacuum-shield thermal insulation stack under conditions 
of radiative heat transfer to the stack face. We have also developed a procedure for solving 
problems which involve high-power radiant heat sources. 

The study has revealed that increasing the emissivity of the stack face can noticeably 
(by a factor of 2-3) degrade the efficiency of the insulation. The radiant thermal flux 
reaching the bottom base of a channel decreases as the emissivity ~ of the stack face is 
increased. It has been demonstrated that coating the lateral surface of such a channel with 
one layer of polyethylene terephthalate film having a low emissivity will improve the ef- 
ficiency of the insulation stack. It has also been established that in the case of a highly 
nonhomogeneous insulation stack a thinner one will be relatively more efficient. Calcula- 
tion of the radiative heat transfer in such a channel without taking into account its inter- 
action with the heat transfer inside the insulation stack has been found to result in large 
errors (up to 50-100%). 

The proposed thermal model and calculation method can be used for calculating the thermal 
flux through an insulation, with the interaction of vessel necks, brackets, and supports with 
the vacuum-shield thermal insulation stack taken into account. Even the effect of contacts 
between insulation layers can be taken into account. The results of an experimental verifica- 
tion of this calculation method and the conclusions based on it will be presented in the next 
report. 
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NOTATION 

T, temperature; x, coordinate in the direction normal to the stack; 6, stack thickness; 
k, thermal conductivity of the vacuum-shield thermal insulation along the x-coordinate; qv, 
amount of heat released in a unit volume of vacuum-shleld thermal insulation as a result of 
the incidence of radiation on the face of the shield layers; e, emissivity; B, density of ef- 
fective radiant flux; o, Stefan--Boltzmann constant; N, number of surfaces; Sins, surface of 
a vacuum-shield thermal insulation stack; d~di_dj , angular coefficient between elementary 
areas i and j of a surface; Qo, thermal flux through the insulation without a hole; QT, 
thermal flux through the insulation with a hole; Qrad, thermal flux through the insulation 
with radiative heat transfer to the bottom base of the hole; Qs, thermal flux reaching the 
insulation with a hole; Qrad' thermal flux through the insulation with radiative heat transfer 
to the bottom base of the hole; Qs' thermal flux reaching the stack face by radiative heat 
transfer through the hole (channel); Ax, thickness of the i-th insulation layer including one 
or more shields; Ceff, effective emissivity of the gap face; qrad, amount of heat reaching a 
unit area of the bottom base of the hole; To and To, boundary temperatures; ~, length of the 
gap between layers of the insulation stack and the length of the vacuum-shield thermal insula- 
tion stack; h, width of the gap between layers of the insulation stack; and %11' longitudinal 
thermal conductivity of the vacuum-shield thermal insulation. 
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